
SpeLATEX — Speech-enabled LATEX

Walter Daems (walter.daems@uantwerpen.be) and Paul Levrie

v0.91— 2024/06/21

1 Preface .

1.1 Background .

At our institute, the University of Antwerp in Belgium, the number of students
with reading and/or writing disorders (or at least aware of these disorders) is
increasing. Approximately 5% of the students are registered with such a disor-
der. Probably there’s an additional number of people opting not to register their
disorder.

A large portion of the study materials we offer to students is still written material.
The authors believe that this will keep on being so, even given the multimedia and
AI options that have become mainstream. Let’s not go into this debate for now.
However, written course texts cannot be but suboptimal for students with reading
disorders.

For small texts, reading them out loud and recording them using a voice recorder
to create an aid for our target group, is still feasible. We have taken that route at
our institute for exam assignments. However, for bigger texts (like course syllabi)
this is beyond the time a teacher can afford spending on this small a group of
students. Yes, economic laws also govern teaching!

1.2 State of the art .

1.2.1 In general .

Therefore, reverting to readily available text-to-speech software is an obvious
choice. Nowadays, special software exists that provides the functionality of reading
out loud the contents of electronic documents, e.g. NVDA [1] or SprintPlus [2].
Moreover, more and more standard PDF readers (such as Acrobat Reader [3]
have the facility of performing text-to-speech). For nontechnical subjects, this
works fine. However, when it comes to technical course syllabi that are loaded
with non-trivial mathematics, the standard text-to-speech packages fail to meet
our expectations. In addition, they cannot read a sensible textual description of
figures or tables.

1

The issue with reading mathematics will be solved in the future, by enforcing
mathematical equations to follow a specific standard that can be parsed and con-
verted, not only into a visual representation, but also into proper text. MathML
will be one of the candidates for that format.

The issue with figures and tables can be solved by using the tag infrastructure
of PDF. The format provides a system of tags that allow you to provide extra
information about the content of a document, in much the same way as you can
specify an ’alt’ key for an image in HTML. This tag could contain a proper textual
description of the figure or the table.

1.2.2 For LATEX .

Currently, the LATEXproject is investing in enabling LATEX to partially automate
the tagging of PDFs with the tagpdf package [4], such that the user only has to
do a minimal job (adding tags for figures and tables). The goal is to maximize
the accessibility of LATEX-produced documents.

So all is well? Not quite. Though I’m confident that with enough time the
community will solve the issue completely, there are still some gaps:

• The tagpdf package is still not a part of the mainstream LATEX-kernel.

• MathML reading support in PDF readers is still in its infancy.

• Many PDF readers do not fully support tags yet.

1.3 This package .

This package aims to overcome these problems in the meantime and also to con-
tribute to the longterm goal: making perfectly tagged PDFs that are read by any
PDF-reader.

In the first phase of this package (i.e. the version you are looking at right now),
this package reads your LATEX source, converts the text and the formulas to audio
files and equips your PDF with hyperlinks to these files, such that with a few clicks
you can listen to your document. The audio files are external files that should be
packaged with your PDF to allow a reader to use the document with the available
audio. How does it read the formulas? It parses your LATEX constructs and makes
the best of it. This will probably be the part that might survive up until the very
last phase of this package.

In a second phase of this package, the audio files will be embedded into the PDF.
Currently, there are not enough PDF readers that support this feature. Therefore,
we decided to keep using the external audio files for now.

In a third phase, the audio files may be abandoned alltogether, fully switching to
tags. And we do think that this should be the end goal. The reasons why we say
’may be’, are:

• The voices of the current PDF-readers are still not of the same quality as
the ones available online. And quality does matter.

2

• The better voices may require cloud access, and probably will not be free,
therefore (me) paying for them at document creation time, makes more sense
to me than having my students pay for these voices whenever they read the
document.

• The industry standard Adobe reader is not easily available on open-source
operating systems (like UNIX/BSD/Linux-derived platforms). You might
consider using emulation using wine [5], but in that case you can forget
about audio. Free access to software is something we consider to be a must-
have, rather than a nice-to-have. In addition, Walter feels miserable when
he’s forced to use anything else than GNU/Linux, because then he keeps
moaning that his productivity is ruined.

Admittedly, in this first phase, using the SpeLATEX package causes a significant
overhead in writing your text. Therefore we also provide you the SpeLbox exten-
sion for the Org-mode [6] of GNU Emacs [7]. To satisfy your curiosity: SpeLbox
stands for “Speech-Enabled LATEX By Org-mode eXport”.

Will SpeLATEX become obsolete in the future? Undoubtedly so. But for the time
being, it answers our desire to provide our students with good audio support when
studying their engineering courses. That is now, not only in five years time.

We hope that you enjoy using our software, or that — if you are not pleased with
it — it triggers you to give us feedback or to come up with a better solution.
We especially would like to thank Ulrike Fischer (of the LATEX-project and the
maintainer of the tagpdf package) for trying to use this package and reaching
out to give us feedback. One of her suggestions (not to use big hyperlink-areas)
was almost instantly implemented and has been adopted as the standard way of
linking.

You are free to use our software but kindly ask you to provide a mention “The
audio materials of this text have been prepared with SpeLATEX/SpeLbox” in the
section treating copyrights, bibliographic data or any other spot that is suited.
We’d also welcome a short mail of yours telling that you make use of the package.
The pleasure of receiving such an e-mail makes our day.

You are free to modify this LATEX-package, keeping a reference to our original
package intact, provided that your package is subject to the LPPL license, as is
SpeLATEX. However, contributing to our package might be a better way to go, in
order to bundle the efforts for a better speech-enabled LATEX.

2 Introduction .

2.1 Target audience .

SpeLATEX is primarily intended for persons with a reading disorder. This may be:

• persons suffering dyslexia

• visually impaired persons

3

– persons who still can recognize the basic parts of a book, i.e. are able
to operate a PDF viewer and click on the individual parts.

– persons who can’t recognize the basic parts of a book (e.g., blind per-
sons): they can listen to the automatic playback of the ordered chain
of audio fragments.

But also people who want to multitask, e.g., gardening while listening to a technical
book, can benefit from SpeLATEX.1 Personally, we often use SpeLATEX to proofread
texts as we hear language errors more easily than we spot them while reading.

2.2 The magic under the hood .

2.2.1 The SpeLbox-ecosystem .

The SpeLATEX-package is one of the parts of the SpeLbox ecosystem. It consists
of three components:

• An Org-mode exporter called ox-spel [8]

• This LATEX-package SpeLATEX [9]

• A script embeded in the Perl module SpeL::Wizard [10]

2.2.2 The overall picture .

SpeLATEX equips the PDF that is generated by LATEX with hyperlinks to audio
files that contain the spoken equivalent of the original text, equations, figures and
tables

Let’s look at this in detail in Fig. 1. For now, ignore the two top boxes, and let’s
assume you are composing the file text.tex as your document. We will return to
the two top boxes later.

By loading the spel.sty package in your source document, LATEX will produce
a PDF file that references audio files that will be generated later (see below). In
addition, it generates text chunks (i.e. small portions of your text) in separate
files (.tex) and a spel index file (.spelidx) referencing them in sequence.

Together with the .aux-file (needed by SpeLATEX for labels and citations), these are
the inputs to the SpeLATEX-engine (spel-wizard.pl) that parses the text chunks,
writes a full text version of them as spel files (with extension .spel) and controls
the text-to-speech engine to generate audio files of them.2

To avoid excessive text to speech conversion (i.e. an expensive step) the SpeLATEX
engine derives a finger print of them and compares it to previously generated fin-
gerprints for the chunk. If the finger print has changed, the audio file is overwritten
(or created the first time), otherwise it is left untouched.

1Note that multitasking is not reserved for persons without visual impairment. Also visually
impaired persons can benefit from listening to an audiobook while doing other things.

2In the figure, Ogg Vorbis has been chosen as format, but this can be any audio format.

4

As a cherry on top, the SpeLATEX-engine also creates a playlist, such that you may
use the audio files for a PODcast-like listening experience.
Something that has not been indicated on the figure, is that for reading out loud
entire (sub)sections, the PDF-file also references m3u playlists that gather all
chunks belonging to the (sub)section.

You might wonder: where are the links? Well, there are three variants:

• area links, which are almost exclusively used for equations, tables or figures.
These links make an entire rectangle active, linking to the corresponding
audio file.

• group links, indicated by small right-pointing triangles next to section head-
ers. These cause all blocks in the section to be read one by one.

• hidden links, wich are, as the name suggests, hidden to avoid visual distur-
bance of the text; every paragraph, footnote and list is activated by a link
on the whitespace before the first line of the chunk. Try it! Once you are
aware that these regions are active, you’ll find them easily. In addition, not
using the full paragraph as an active region, allows existing hyperlinks (like
for citations, references or URLs) to still function.

2.2.3 Implicit spelchunks .

Generating the text chunks to be read out loud requires us to use special LATEX-
macros. For all pieces of text that are within an existing macro (e.g. \title,
\author, \section, \caption, \footnote, \thanks), these macros have been re-
defined by the SpeLATEX-package to execute the magic without any further hassle.
We call these LATEX-fragments implicit spelchunks.

However, not all LATEX-constructs can be dealt with in an automatic way. This is
true for any \item you put inside a list. You need to replace that with a \spelitem
that takes the text that follows as a first explicit argument, i.e. \item blabla
should be replaced by \spelitem{blabla}. We call these LATEX-fragments defunct
implicit spelchunks. They should have been implicit, but we could not get that to
work without problems. Therefore you need to mark them explicitly as \spelitem
constructs.

2.2.4 Explicit spelchunks .

One would hope that displaymath environments are also implicit spelchunks. How-
ever, overriding environments in LATEX is a tricky business. In view of this, the
SpeLATEX package keeps away from this, and we’ve chosen to treat displaymath
environments (like equation, eqnarray, gather, align, alignat) the same way
as tables or figures, i.e. you need to embed the in a spelchunk environment. The
only difference between math environments and figures an tables is that display-
math environments can be automatically read out loud by the spel-wizard.pl
script, while you will have to provide a text description for tables and figures
manually, using a subsequence spelchunkad environment (the suffix ad stands for
audio description).

5

text.org
(unprepped source)

Org-mode exporter
(SpeLbox)

text.tex
(prepped source)

spel.sty
(package)

LATEX
(compiler)

text.pdf
(PDF with
hyperlinks)

text.spelidx
(index file)

text.aux
(auxiliary file)

*.tex
(text chunks)

spel-wizard.pl
(SpeLATEX engine)

text-to-speech
engine

*.ogg
(audio files)

*.spel
(spel files)

text.m3u
(playlist)

*.md5
(fingerprints)

Figure 1: Basic tool setup of SpeLbox of which the SpeLATEX package is an integral
part; filled boxes indicate files, outlined boxes indicate tools; solid lines indicates
use or creation of files, dotted lines indicate references, dashed lines indicate a
control relationship.

6

To keep the terminology clear, we label them as automatic and manual spelchunks
respectively:

• automatic: equation, eqnarray, gather, align, alignat, …

• manual: figure, table, tikzpicture, …

The similarity between both categories is that you both embed them in a
spelchunk environment, but that you provide the manual textual description
using a spelchunkad environment right after the chunk: in this way, the
spelchunkad environment provides an alternative text for the chunk. Note that
this way of working also enables you to provide an overriding text for an equation,
if you think that spel-wizard.pl is doing a bad job. You do me a favor if you
submit this subpar behavior as a bug report to me!

It is worthwile to make good descriptions for a figure or a table. It’s here that
you can create true added value to your manuscript, even for readers without
impairment!

2.2.5 Paragraphs .

However, there is the elephant in the room that we did not yet talk about, the
paragraph. Indeed, it is desirable to split plain text according to the paragraphs
in the document. Alas, paragraphs are one of the silent features that are not
easily accessible from within a LATEX-package. Therefore paragraphs (or smaller
text chunks) are considered to be explicit spelchunks and need to be embedded in
spelchunk environments. This environment will cause its contents to be hyper-
linked to a separate piece of audio.

Encasing all your paragraphs with spelchunk environments manually is a pain.
There is a reason why in LATEX paragraphs can be created by a double newline:
convenience. The spelchunk-environment encasing ruins this totally!

2.2.6 Emacs Orgmode to the rescue! .

However, we provide an exporter for the Org-mode [6] of Emacs [7], such that you
can prepare your manuscript in Org-mode and not worry about all these exlicit
tricks with spelchunk and spelitem constructs.

This brings us to the two top boxes in the diagram of Fig. 1. If you prepare
your manuscript in Org-mode, and use the Org-mode exporter, you don’t have
to worry about explicit spelchunks, or defunct implicit spelchunks. Therefore, we
encourage you to use Emacs as your editor. The learning curve is steep, but the
rewards regarding ease-of-use are huge. In that way, you can focus on providing
textual descriptions for the non textual portions of your manuscript, e.g. giving a
good description of a graph.

Note that this very document has been prepared manually to make it independent
of Org-mode. It also shows that if you don’t want to use Emacs and Org-mode, you
will suffer some considerable pain in equipping your manuscript with an overload

7

of spelchunk environments. We have only one advice: don’t use the SpeLATEX out-
side SpeLbox. Outside a proper boxed confinement, spells easily become curses…

2.3 Extra math commands .

Some of the ways to specify mathematical expressions in LATEX is very liberal,
what makes converting them to text quite difficult. Therefore, we also provide
some extra constructs that make life easier for both parties: you as a user and
spel-wizard.pl as a parser.

An example of this are sets. We provide two commands to define a set. As we
want these commands to blend in with general LATEX, we did not equip them with
a prefix spel. Therefore, we made activating them conditional to specifying the
package option extramath.

\setenum a command to define a set that consists of comma or semicolon sepa-
rated elements

\setdesc a command to define a set that is specified using a description

2.4 Added value .

Why would it make sense to use SpeLATEX? We think there are many selling
points. We can mention a few:

Minimal overhead Preparing a LATEX manuscript for use with SpeLATEX re-
quires a minimal amount of work, if you are using Org-mode in Emacs.

Free for the content provider If you are using a freeware text-to-speech en-
gine (like for example festival [11] or balabolka [12]) and a royalty-free audio
format and player (like for example ogg-vorbis), generating audio-enabled
documents only requires the effort of preparing your manuscript. There are
no license costs involved.
You could also consider to use an online paying text-to-speech service. As
an example, We incorporated a connection to Amazon’s Polly [14].
In addition, if your user has a better-quality (maybe commercial) text-to-
speech system, he/she can reconvert the text files him-/herself, equiping
your document with a voice they like and are used to, without you having
to worry about license costs. They might even use an AI-generated copy of
their own voice!

Free for your audience In addition, the user of your audio-enabled document
doesn’t need to buy a license for text-to-speech software. Only a PDF-viewer
and standard audio-player program are required.

Math capable Try some of the equations in this manuscript. We are quite
confident you’ll be convinced fairly soon.

8

3 Installation .

3.1 The SpeLATEX package .

If you are a package manager then you’ll know how to prepare an installation
package for SpeLATEX.

If you are a normal user then you have two options. First, check if there is a
package that your favorite LATEX distributor has prepared for you. Most of the
major distributions (like e.g. Tex Live or MikTeX) do so.
Second, grab the TDS package from CTAN [15] (spel.TDS.zip) and unzip it some-
where in your own TDS tree, regenerate your filename database and off you go.
In any case, make sure that LATEX finds the file spel.sty.

The SpeLATEX package uses a number of auxiliary packages, fetch them from CTAN
[15] if your TEX distributor does not provide them. The ones used are: expl3,
hyperref, ifthen, fancyvrb, newfile, rotating, babel, kvoptions.

3.2 The spel-wizard.pl speech generator .

3.2.1 The script .

You can install the wizard assuming you have a working Perl interpreter installed.
Assuming you’re on GNU/Linux or MAC, you should be able to find an installation
package using the package manager for your distribution. If you are on MS-
Windows, look for Strawberry perl or ActiveState perl.

The only thing to do is to install the SpeL::Wizard module. You can do this with
the perl pacakge manager for your interpreter.

Open a terminal or command window, and then enter on the command line (the
dollar represents your prompt):

On GNU/Linux and MAC: $ cpanm SpeL::Wizard
On Strawberry perl: $ cpan SpeL::Wizard
On ActiveState perl: $ ppm install SpeL-Wizard

The script spel-wizard.pl will be installed on your system. Make sure it is on
your search path.

3.2.2 The configuration file .

Finally, you need to provide spel-wizard.pl with an appropriate config-file,
named tts.conf that sets up the text-to-speech conversion. Below you can find
a setup for Festival [11]:

[engine]
tts=festival

[languagetags]

9

dutch=nl
english=en-gb

[voices]
dutch=nl1_mbrola
english=en1_mbrola

And additionally, for the Microsoft users a setup for Balabolka [12]:

[engine]
tts=balabolka

[languagetags]
english=en-us

[voices]
english=Zira

The tts configuration parameter defines the speech engine to use. The language-
tags section defines how the babel languages are mapped to internationalization
codes (also known as locales). The voices section specifies what voice to use for a
specific language.

An environment variable can specify where your config file is located, e.g., on
GNU/Linux:

$ export SPELWIZARD_CONFIG=/home/wdaems/.config/tts.conf

If that variable is not set, the script will look in a subdirectory .spel_wizard of
your home-folder (or %userprofile% in MS-Windows), or it will take the default
that came with the SpeL::Wizard module.

Be aware that you need to install your text-to-speech tool yourself according to
the documentation provided by the tool provider. In addition, make sure it the
executable is in your search path. In case you are using an online text-to-speech
service provider you will need to get an account on their cloud platform and setup
credentials and whatever is needed to get going. Providing assistance for this is
beyond the aim of this manual.

3.3 The PDF viewer .

You need to make sure you have a PDF-viewer that supports links containing
’run’ tags. E.g., xpdf [17] does not, evince [18] complains about security risks, but
okular [19] and Adobe Reader [3] do. So does PDF-XChange Viewer [20].

3.4 The media player .

When clicking a SpeLATEX-enabled item in your PDF-file, your media player is
started to play the .ogg or .m3u-file. On GNU/Linux most media players work
fine (SoX, totem, vlc, …).

10

On windows, we recommend using vlc. It works out of the box. When usign the
stock Windows Media Player, you will need to add every folder that contains a
PDF you’d like to have read, to your Media Player library. Search the internet
to find instructions on that and be prepared: in line with Microsoft’s standard
practice it is well hidden in the interface.

4 Usage .

4.1 Preparing your document source .

Using the SpeLATEX package is very simple. Just load the package’s style file using
an appropriate \usepackage{spel}.

In case you are not using Org-mode, there are 5 things to do:

1. Treat the defunct implicit spelchunks

2. Treat the explicit spelchunks

3. Manually provide text to read when needed

4. Provide audiodescriptions or preprocessing instructions for your typesetting
macros

5. Provide audiodescriptions or preprocessing instructions for your typesetting
environments

Steps 1 and 2 can be done automatically for you by using Org-mode in Emacs and
using the proper spel exporter. Steps 3, 4 and 5 are up to you. In this section,
we assume you are executing all 5 steps manually and therefore, we will explain
all required macros.

4.1.1 Treat the implicit spelchunks .

The texts of chapter, (sub)section titles, a.s.o. will be formatted automatically
such that they are hyperlinked to the appropriate audio file. Therefore, this step
was not mentioned above. It is done automatically for you by using the SpeLATEX
package.

You only need to cover your defunct implicit spelchunks:
Use this macro instead of the \item macro to make sure your list environments\spelitem
are converted to speech chunks appropriately.

Example:

We like
\begin{itemize}

\spelitem{apples,}
\spelitem{pears, and}
\spelitem{oranges.}

\end{itemize}

11

Another example:

If you don't know these fruits:
\begin{description}

\spelitem[apple]{a green round fruit}
\spelitem[pears]{a green pointy-shaped fruit}
\spelitem[orange]{an orange round fruit}

\end{description}

Note that the spel exporter in Org-mode takes care of all this boilerplate work.

4.1.2 Treat the explicit spelchunks .

Use this environment to embed the chunks of text in that you want to generatespelchunk (env.)
audio for. In case the content is an equation, a figure or a table, we recommend
specifying arealink as the optional argument to the spelchunk environment. It
makes the entire equation an active hyperlink.

Example:
(note: the example below is not SpeLATEX-enabled because it generates internal package prob-
lems)

\begin{spelchunk}
An orderinary paragraph must be embedded in this environment.
The same holds for equations! However, then we recommend using
the |arealink| option, as that makes the full area of the
equation clickable and avoids an empty white line before the
equation.

\end{spelchunk}
\begin{spelchunk}[arealink]

\begin{align}
E &= m c^2\\
e^{j\pi} &= -1

\end{align}
\end{spelchunk}

4.1.3 Manually provide text to read when needed .

If you want a different text to be used for the previous spelchunk environment,spelchunkad (env.)
this environment allows you to specify it. For plain text or math environments,
this is also your generic escape route in case the spel-wizard.pl parser does not
work as you’d like it to.
Just have your spelchunk environment followed by a spelchunkad environment
that specifies the correct text to read out loud. However, please, file a bug report,
such that we can improve the tool.

Example:
(note: the example below is not SpeLATEX-enabled because it generates internal package prob-
lems)

12

\begin{spelchunk}
An orderinary paragraph must be embedded in this environment.

\end{spelchunk}
\begin{spelchunkad}

Do not forget to embed ordinary paragraphs in this environment.
\end{spelchunkad}

For non-textual material such as figures or tables, this allows you to specify a
sensible text that acts as an audio description for that material.
Just have your spelchunk environment that surrounds your figure or table, fol-
lowed by a spelchunkad environment that provides the audio description for the
non-textual material.

Example:
(note: the example below is not SpeLATEX-enabled because it generates internal package prob-
lems)

\begin{spelchunk}
\includegraphics{engine.jpg}

\end{spelchunk}
\begin{spelchunkad}

The image shows a turbo-fan engine of an aircraft. One can
clearly see the silver blades of the fan, and the housing. Note
how little spacing there is between the blades and the housing.

\end{spelchunkad}

4.1.4 Provide descriptions for typesetting macros .

Often, recurring constructs are being typeset using a dedicated macro, defined by\spelmacad
the user. For example, to consistently typeset input voltages for arbitrary pins,
one might have defined the macro:

\newcommand\vin[2][IN]{\ensuremath{v_{\mathit{#1},#2}}}

This allows easy specification of

\vin{1} = \sin 20 t

resulting in vIN ,1 = sin 20t.

However one might want this line to be read as ’the input voltage at pin 1 equals
sine 20 t’.
To this end, one can provide an description for this macro using the spelmacad
macro.

Example:

\spelmacad{vin}[1][IN]{the #1put voltage at pin #2}

Note that the audio description in this case will only be acceptable, for arguments
IN and OUT. One clearly has to take the audio description into account when
defining LATEX-macros.

13

4.1.5 Descriptions for typesetting environments .

Often, recurring constructs are being typeset using a dedicated environment, de-\spelenvad
fined by the user. For example, to consistently typeset a proof or illustration one
might have defined the environment:

\newenvironment{proof}[2][Proof]{
\textbf{#1: #2}\\

}
{

\hfill\blacksquare\\
}

This allows easy specification of an illustration as:

\begin{proof}[Illustration]{solving a quadratic equation}
blabla

\end{proof}

However one might want this environment to be read as ’Illustration of solving a
quadratic equation: blabla. This concludes this illustration.’
To this end, one can provide an description for this macro using the spelenvad
macro.

Example:

\spelenvad{proof}[1][Illustration]
{#1 of #2:}
{This concludes this #1.}

4.1.6 Using the i18n features of spel-wizard.plwhen describing your
macros and environments .

Sooner rather than later you will feel the need to provide reading alternatives for
your constructs that are language dependent. In that case you can call the i18n
features that are built into spel-wizard.pl. We illustrate this with an example.

Assume you’ve made your own command to raise numbers to a power, and you
provide and description for your macro.

\newcommand\numtopower[2]{#1^{#2}}
\spelmacad{numtopower}[2]{#1 to the power of #2}

The problem with this solution is, that it only works for one language. The solution
is to use an i18n expression in your description:

\spelmacad{numtopower}[2]{#1 @{i18n(Power,#2)}}

This will call the maketext function (See Locale::Maketext) on the Lexicon pro-
vided in SpeL::Wizard::I18n, as:

14

$SpeL::Wizzard::I18n::lh->maketext('Power', "#2")

to read your macro.

4.1.7 The extra math commands .

Note that these commands are only available if you provide the package option
extramath.

This macro typesets an enumeration set and makes sure spel-wizard.pl can read\setenum
it properly.

\begin{equation}
P = \setenum{ 2, 3, 5, 7, 11, 13, \ldots }

\end{equation}

This macro typesets an enumeration set and makes sure spel-wizard.pl can read\setdesc
it properly.

\begin{equation}
P = \setdesc{ n \in N \mid n \text{~is prime} }

\end{equation}

4.2 Going through the flow .

Once your document source has been prepared, you are ready for the regular
SpeLATEX-flow. It consists of 3 steps.

1. Create a jobname-spel subdirectory in the working directory your LATEX
source document is in (replace jobname with the basename of your latex file,
the final -spel is a literal).

2. Run your document 3-times through your {pdf,Xe,Lua}LATEX-compiler to
get all the references right.

3. Run the spel-wizard.pl speech generator (see scripts directory or the wrap-
per provided by the package manager), by launching it with the base name
of your document as command-line argument.
E.g.: spel-wizard.pl -v example
The -v argument causes the script to be somewhat more verbose.

The result of this will be a PDF file equipped with links to audio files in the
’speech’ subdirectory. Alas your PDF file has been become a little less portable,
as it now requires the ’speech’ subdirectory to be complete. You might want to
package the ensemble into a tar-file or zip-archive.

15

5 Example .

Below, you can find a simple example to give you a head-start. In order not to
spoil the fun for you, the embedded version here is not speech-enabled.

1 \documentclass{article}
2

3 \usepackage[dutch,english]{babel} % load babel before spel to avoid
4 % option clash!
5 \selectlanguage{english}
6 \usepackage[format=ogg]{spelatex}
7

8 \newrobustcmd\CTAN{CTAN}
9 \spelmacad{CTAN}{see-tan}

10 \newrobustcmd\CPAN{CPAN}
11 \spelmacad{CPAN}{see-pan}
12

13 \title{\spelatex{} Example}
14 \author{Walter Daems and Paul Levrie}
15 \date{2011/04/12}
16 \setlength\parindent{0em}
17 \setlength\parskip{1ex}
18

19 \begin{document}
20

21 \maketitle
22

23 \section{Introduction}
24

25 \begin{spelchunk}
26 This file is just a simple showcase of the features of \spelatex.
27 Below, you'll find examples of:
28 \end{spelchunk}
29

30 \begin{itemize}
31 \spelitem{a simple equation}
32 \spelitem{a more complex equation}
33 \end{itemize}
34

35 \section{A simple equation}
36 \label{eqn:simple}
37 \begin{spelchunk}
38 Consider the following simple definition of a polynomial function and
39 check its spoken version by clicking on it.
40 \end{spelchunk}
41 \begin{spelchunk}[arealink]
42 \begin{equation}
43 f(x) = x^{5}- x^4 + 7 x^3 + 3 x^2 - 8 x + 23

16

44 \end{equation}
45 \end{spelchunk}
46 \begin{spelchunk}
47 This seems a simple equation, however, it is not so straightforward
48 for an automated reader, to read it correctly.
49 \end{spelchunk}
50

51 \section{A more complex equation}
52 \newcommand\xx[2]{\ensuremath{#1_{#2}}}
53 \spelmacad{xx}[2]{#1 #2}
54

55 \label{eqn:complex}
56 \begin{spelchunk}
57 For a lightray that hits the parabola at the point
58 $P(t,9-\frac{t^2}{4})$, the reflected ray has slope $\tan 2\alpha$.
59 Since the slope of the tangent to the parabola at P is
60 equal to $\tan\alpha = -\frac{t}{2}$, the equation of the
61 reflected ray is given by
62 \end{spelchunk}
63 \begin{spelchunk}[arealink]
64 \[
65 y-9+\frac{t^2}{4} = -\frac{4t}{4-t^2} \cdot (x-t)
66 \]
67 \end{spelchunk}
68

69 \selectlanguage{dutch}
70 \section{Een andere taal}
71 \begin{spelchunk}
72 \spelatex{} is ook volledig babel-actief, wat wil zeggen dat de
73 voorleesstem de geselecteerde taal zal volgen.
74 \end{spelchunk}
75

76 \begin{spelchunk}[arealink]
77 \[
78 y-9+\frac{t^2}{4} = -\frac{4t}{4-t^2} \cdot (x-t)
79 \]
80 \end{spelchunk}
81

82 \selectlanguage{english}
83 \section{And some extras}
84 \subsection{Citations}
85 \begin{spelchunk}
86 Two excellent repositories are \CPAN{} \cite{CPAN} and \CTAN{} \cite{CTAN}.
87 \end{spelchunk}
88

89 \subsection{References to labels}
90 \begin{spelchunk}
91 Section~\ref{eqn:simple} contains an illustration of a simple
92 equation. For a more complex equation, we refer the user to
93 section~\ref{eqn:complex}.

17

94 \end{spelchunk}
95

96 \bibliographystyle{alpha}
97

98 \begin{thebibliography}{99}
99

100 \bibitem{CTAN}
101 The Comprehensive \TeX{} Archive Network.
102 \newblock \url{http://www.ctan.org}.
103 \newblock online, accessed in August 2021.
104

105 \bibitem{CPAN}
106 The Comprehensive Perl Archive Network.
107 \newblock \url{http://www.cpan.org}.
108 \newblock online, accessed in August 2021.
109

110 \end{thebibliography}
111

112 \end{document}

6 Demo .

The examples below have been composed and used to test the math reading ca-
pabilities of SpeLATEX and spel-wizard.pl. The source code has not been made
visible in this document. If you’d like to see the source code, check the original
.dtx-file that was used to generate this PDF-file.

6.1 Numbers .

π (1)
−31415 (2)

1.25 (3)
−0.34× 104 (4)

12− j3 (5)
−31415.23 + .45i (6)

18

6.2 Fractions .

6.2.1 A fraction only containg numbers .

x = −1

2
(7)

y = −
√

π

2
(8)

6.2.2 A fraction with a little more under the hood .

u = −x2 + 35√
12

(9)

v = −
√

π
2

−3x2 + 3
(10)

6.3 Simple expressions .

6.3.1 A polynomial function .

f(x) = x5 − x4 + 7x3 + 3x2 − 8x+ 23 (11)

6.3.2 Some more complex equations .

Here’s de Moivre’s formula:

(cosx+ j sinx)
n
= cos(nx) + j sin(nx) (12)

Euler’s relationship:
ejφ = cosφ+ j sinφ (13)

Euler’s identity:
ejπ + 1 = 0 (14)

19

6.3.3 A rather well-known definite integral .

∫ ∞

−∞
e−x2

dx =
√
π (15)

6.4 Sets .

Let’s check the two set commands this package provides: \setenum and \setdesc:

P = {2, 3, 5, 7, 11, 13, . . .} (16)
P = {n ∈ N | n is prime} (17)

6.5 Matrices .

How about some linear algebra?[
3 4
7 2

]
·
[
x
y

]
=

[
1
0

]
(18)∣∣∣∣3 4

7 2

∣∣∣∣ = −22 (19)

6.6 Figures and Tables .

6.6.1 Figures .

The example Fig. 2 illustrates the voice-aid that can be added to figures.

x[n] - H(z) - G(z) ∗ F (z) - y[n]

Figure 2: A block diagram of the filter system

6.6.2 Tables .

Food Sweet Bitter
apple •
unsweetened coffee •
cake •
chocolate • •

20

6.7 A parabola tale .

For a lightray that hits the parabola at the point P (t, 9 − t2

4), the reflected ray
has slope tan 2α. Since the slope of the tangent to the parabola at P is equal to
tanα = − t

2 , the equation of the reflected ray is given by

y − 9 +
t2

4
= − 4t

4− t2
· (x− t) (20)

The x-coordinate of the point of intersection of the reflected ray with a fixed line
y = u satisfies:

u− 9 +
t2

4
= − 4t

4− t2
· (x− t) (21)

We calculate the minimal value of this x for varying t, by differentiating (21) with
respect to t and assuming that dx

dt = 0:

t

2
= −4(4 + t2)

(4− t2)2
(x− t)− 4t

4− t2
· (−1) ⇔ x = 3

t

2
− t3

8

Inserting in the equation containing u gives us the relation between t and u:

u = 9− 3
t2

4

This leads to a system of parametric equations for the caustic: x = 3 t
2 − t3

8

y = 9− 3 t2

4

⇔

{
x = t

2 · (3− t2

4)

y = 3(3− t2

4)

It is now easy to eliminate the parameter t. As you can see, t = 6x
y . Inserting into

the equation for y gives us the equation of Tschirnhausen’s cubic.

7 Implementation .

To ease the implementation work and because raw LATEX code is difficult to read
on itself, We took the liberty of not providing this section with speech chunks
(except for this introduction text).

7.1 Design principles .

SpeLATEX has been developed using the following main targets in mind. Some
of them are common sense design principles, some of them are specific for this
application.

• minimal effort in preparing a LATEX manuscript for use with SpeLATEX

21

• maximal compatibility with existing LATEX packages

• no (or minimal) compromise mathematical reading capabilities for mathe-
matical constructs

• user extensible audio preprocessor

• minimal use of processing power for text to speech conversion

7.2 Auxiliary Packages .

The SpeLATEX package uses some basic auxiliary packages to make life easy.

1 \RequirePackage{expl3}
2 \RequirePackage{hyperref}
3 \RequirePackage{xcolor}
4 \RequirePackage{ifthen}
5 \RequirePackage{fancyvrb}
6 \RequirePackage{newfile}
7 \RequirePackage{rotating}
8 \RequirePackage{babel}
9 \hypersetup{backref=true,

10 breaklinks=true,
11 colorlinks=true,
12 citecolor=black,
13 filecolor=black,
14 hyperindex=true,
15 linkcolor=black,
16 pageanchor=true,
17 pagebackref=true,
18 pagecolor=black,
19 pdfpagemode=UseOutlines,
20 bookmarksopen=true,
21 urlcolor=black}
22 \RequirePackage{kvoptions}
23 \RequirePackage{xkeyval}
24 \RequirePackage{marginnote}

7.3 Options .

25 \SetupKeyvalOptions{
26 family=spel,
27 prefix=spel@
28 }
29 \DeclareStringOption[ogg]{format}
30 \DeclareBoolOption[false]{disabled}
31 \DeclareBoolOption[false]{extramath}
32 \DeclareBoolOption[false]{propermath}
33 \ProcessKeyvalOptions*

7.4 Logos .

Vanity is everything, so let’s make some logoware.

22

\spelatex This is the official SpeLATEX logo.

34 \DeclareRobustCommand{\spelatex}{S\kern-0.3ex\raisebox{-0.1ex}{\rotatebox{-
15}{p}}\kern-0.25ex\raisebox{0.1ex}{\rotatebox{10}{e}}\kern-0.1ex\LaTeX}

\spelbox This is the official SpeLbox logo.

35 \DeclareRobustCommand{\spelbox}{S\kern-0.3ex\raisebox{-0.1ex}{\rotatebox{-
15}{p}}\kern-0.25ex\raisebox{0.1ex}{\rotatebox{10}{e}}\kern-0.1exLbo\raisebox{-
0.2ex}{x}}

\spelpl This is the official spel-wizard.pl logo.

36 \DeclareRobustCommand{\spelpl}{\texttt{spel-wizard.pl}}

7.5 The speech stream .

The basic structural elements of a document (title, chapters, sections, …) are
written to the speech index stream. This is a textfile that has the same base name
as your LATEX job and has extension .spelidx.

It is the index to the chunks of text that are written to the speech directory.

The .spelidx file requires postprocessing by the spel-wizard.pl script in order
to obtain the required audio files.

The speech stream needs to be open before the preamble’s title, author and date.

37 \newoutputstream{chunk}
38 \newoutputstream{spelidx}
39 \openoutputfile{\jobname.spelidx}{spelidx}

The stream needs to be closed upon termination of the document.

40 \AtEndDocument{
41 \closeoutputstream{spelidx}%
42 }

To begin with, we write the standard locations for audio and chunk data to the
.spelidx file.

43 \newcommand\audiodir{\jobname-spel}
44 \newcommand\chunkdir{\jobname-spel}
45 \addtostream{spelidx}{format|\spel@format}
46 \addtostream{spelidx}{audiodir|\audiodir}
47 \addtostream{spelidx}{chunkdir|\chunkdir}

To ease writing to the speech index stream, we define a \spelidxwrite function
to take care of appropriate formatting.

\spel@idxwrite This is an internal macro, used to write information to the .spelidx file and to a
correspondig chunk file.

48 \ifspel@disabled\newcommand{\spel@idxwrite}[2]{}\else

23

49 \newcommand{\spel@idxwrite}[2]{%
50 \typeout{spel: Generating #1 - #2}%
51 \addtostream{spelidx}{#1|#2}%
52 }
53 \fi

To ease writing speech chunk, we define a \spel@chunkwrite function.

\spel@chunkwrite This is an internal macro, used to write information to the speech chunk files.

54 \ifspel@disabled\newcommand{\spel@chunkwrite}[2]{}\else
55 \newcommand{\spel@chunkwrite}[2]{%
56 \openoutputfile{\audiodir/#1.tex}{chunk}%
57 \addtostream{chunk}{#2}%
58 \closeoutputstream{chunk}%
59 }
60 \fi

7.6 Create missing counters .

As we need to be able to fully identify every speech chunk, we need to provide
some missing counters for the starred versions of the sectioning commands.

spel@spart counter

61 \newcounter{spel@spart}
62 \renewcommand\thespel@spart{\@arabic\c@spel@spart}
63 \setcounter{spel@spart}{0}

spel@schapter counter

64 \ifx\c@chapter\@undefined
65 \else
66 \ifx\c@part\@undefined
67 \newcounter{spel@schapter}
68 \else
69 \newcounter{spel@schapter}[part]
70 \fi
71 \renewcommand\thespel@schapter{\@arabic\c@spel@schapter}
72 \setcounter{spel@schapter}{0}
73 \fi

spel@ssect counter

74 \ifx\c@chapter\@undefined
75 \newcounter{spel@ssect}
76 \else
77 \newcounter{spel@ssect}[chapter]
78 \fi
79 \renewcommand\thespel@ssect{\@arabic\c@spel@ssect}
80 \setcounter{spel@ssect}{0}

24

In addition, some elements that are not canonically numbered require a unique
and monotonous numbering.

spel@footnote counter

81 \newcounter{spel@footnote}
82 \renewcommand\thespel@footnote{\@arabic\c@spel@footnote}
83 \setcounter{spel@footnote}{0}

spel@chunk counter

84 \newcounter{spel@chunk}[subparagraph]
85 \renewcommand\thespel@chunk{\@arabic\c@spel@chunk}
86 \setcounter{spel@chunk}{0}

7.7 Setting up the language .

We want to make sure that babel communicates the switching of langauges to spel,
such that it can take not of it. This allows the spel engine to select an appropriate
language-capable voice when generating the spoken text.

87 \AddBabelHook{informspel}{write}{\spel@idxwrite{language}{\languagename}}
88 \EnableBabelHook{informspel}

7.8 Generating speech chunks — implicitly .

7.8.1 Auxiliary macros .

We define a macro to generate wrappers for single-line text elements. The
\spel@registerelement macro does the job. The user can even use the macro
for his own custom single-line text elements (e.g., for a subtitle, a version string).

\spel@registerelement generic macro to register single-line text elements

89 \ifspel@disabled\newcommand{\spel@registerelement}[1]{}\else
90 \newcommand{\spel@registerelement}[1]{%
91 \expandafter\let\csname spel@@#1\expandafter\endcsname\csname #1\endcsname
92 \expandafter\gdef\csname #1\endcsname##1{%
93 \spel@chunkwrite{#1}{##1}
94 \csname spel@@#1\endcsname{\href{run:\audiodir/#1.\spel@format}{##1}}
95 }
96 \expandafter\AtBeginDocument{
97 \spel@idxwrite{#1}{#1}
98 }
99 }

100 \fi

25

7.8.2 Title elements .

By redefining the title elements, \title, \author and \date we avoid having to
chunk them.

Using this macro, we can easily take care of all title-like elements, using:

101 \spel@registerelement{title}
102 \spel@registerelement{date}
103 \spel@registerelement{author}

7.8.3 Table of contents .

104 \ifspel@disabled\else
105 \let\spel@@addcontentsline\addcontentsline
106 \renewcommand\addcontentsline[3]{%
107 \let\spel@@href\href%
108 \renewcommand\href[2]{#2}%
109 \spel@@addcontentsline{#1}{#2}{#3}%
110 \let\href\spel@@href%
111 }
112 \providecommand{\tableofcontents}{}
113 \renewcommand\tableofcontents{%
114 \if@twocolumn
115 \@restonecoltrue\onecolumn
116 \else
117 \@restonecolfalse
118 \fi
119 \@ifclassloaded{article}{\section*{\contentsname}}{\chapter*{\contentsname}}
120 \@mkboth{%
121 \MakeUppercase\contentsname}{\MakeUppercase\contentsname}%
122 \@starttoc{toc}%
123 \if@restonecol\twocolumn\fi
124 }
125 \fi

7.8.4 Sectioning commands .

\@part This is a simple wrapper around the regular \@part macro.

126 \ifspel@disabled\else
127 \let\spel@@part\@part
128 \def\@part[#1]#2{%
129 \setcounter{spel@chunk}{0}% need this because counter resetting fails
130 \spel@@part[#1]{\href{run:\audiodir/\spel@@optpart.\spel@format}{#2}}%
131 \spel@idxwrite{part \thepart}{\spel@@optpart}%
132 \spel@chunkwrite{\spel@@optpart}{#2}%
133 }
134 \fi

\@spart This is a simple wrapper around the regular \@spart macro.

135 \ifspel@disabled\else

26

136 \let\spel@@spart\@spart
137 \def\@spart#1{%
138 \stepcounter{spel@spart}%
139 \setcounter{spel@chunk}{0}% need this because counter resetting fails
140 \spel@@spart{%
141 \href{run:\audiodir/\spel@@optpart star-\thespel@spart.\spel@format}{#1}}%
142 \spel@idxwrite{part}{\spel@@optpart star-\thespel@spart}%
143 \spel@chunkwrite{\spel@@optpart star-\thespel@spart}{#1}%
144 }
145 \fi

\@chapter This is a simple wrapper around the regular \@chapter macro. It is defined
conditionally on the existence of the \chapter macro.

146 \ifspel@disabled\else
147 \ifx\chapter\@undefined\else
148 \let\spel@@chapter\@chapter
149 \def\@chapter[#1]#2{%
150 \setcounter{spel@chunk}{0}% need this because counter resetting fails
151 \spel@@chapter[#1]{%
152 \href{run:\audiodir/\spel@@optpart\thechapter.\spel@format}{#2}}%
153 \spel@idxwrite{chapter \thechapter}{\spel@@optpart\thechapter}%
154 \spel@chunkwrite{\spel@@optpart\thechapter}{#2}%
155 }
156 \fi
157 \fi

\@schapter This is a simple wrapper around the regular \@schapter macro. It is defined
condionally on the existence of the \schapter macro.

158 \ifspel@disabled\else
159 \ifx\schapter\@undefined\else
160 \let\spel@@schapter\@schapter
161 \def\@schapter#1{%
162 \stepcounter{spel@schapter}%
163 \setcounter{spel@chunk}{0}% need this because counter resetting fails
164 \spel@@schapter{%
165 \href{run:\audiodir/\spel@@optpart star-\thespel@schapter.\spel@format}{#1}}%
166 \spel@idxwrite{chapter}{\spel@@optpart star-\thespel@schapter}%
167 \spel@chunkwrite{\spel@@optpart star-\thespel@schapter}{#1}%
168 }
169 \fi
170 \fi

\@sect This is a simple wrapper around the regular \@sect macro.

171 \ifspel@disabled\else
172 \let\spel@@sect\@sect
173 \def\@sect#1#2#3#4#5#6[#7]#8{%
174 % correct default tex behavior
175 \ifnum #2>\c@secnumdepth%
176 \stepcounter{#1}%
177 \fi%

27

178 \setcounter{spel@chunk}{0}% need this because counter resetting fails
179 \spel@@sect{#1}{#2}{#3}{#4}{#5}{#6}[#7]{%
180 \href{run:\audiodir/\spel@@optpart\thesubparagraph.\spel@format}{#8}\hfill%
181 \href{run:\audiodir/\spel@@optpart\thesubparagraph.m3u}{\textcolor{black!25}{\triangleright}}}%
182 \def\spel@@label{\ifnum #2>\c@secnumdepth\else#1 \csname the#1\endcsname\fi}
183 \spel@idxwrite{\spel@@label}{\spel@@optpart\thesubparagraph}%
184 \spel@chunkwrite{\spel@@optpart\thesubparagraph}{#8}%
185 }
186 \fi

\@sect This is a simple wrapper around the regular \@ssect macro.

187 \ifspel@disabled\else
188 \let\spel@@ssect\@ssect
189 \def\@ssect#1#2#3#4#5{%
190 \stepcounter{spel@ssect}%
191 %\setcounter{spel@chunk}{0}% need this because counter resetting fails
192 \spel@@ssect{#1}{#2}{#3}{#4}{%
193 \href{run:\audiodir/\spel@@optpart\thesubparagraph-star-\thespel@ssect.\spel@format}%
194 {#5}}%
195 \spel@idxwrite{section}{\spel@@optpart\thesubparagraph-star-\thespel@ssect}%
196 \spel@chunkwrite{\spel@@optpart\thesubparagraph-star-\thespel@ssect}{#5}%
197 }
198 \fi

7.8.5 Notes .

\@footnotetext This is a simple wrapper around the regular \$footnotetext macro. We use a
spelfootnote counter to keep track of the individual footnotes.

199 \ifspel@disabled\else
200 \let\spel@@fntext\@footnotetext
201 \long\def\@footnotetext#1{%
202 \stepcounter{spel@footnote}%
203 \settowidth\spel@mptboxwidth{\usebox\spel@mptbox}%
204 \spel@@fntext{%
205 \hspace*{-\spel@mptboxwidth}\href{run:\audiodir/footnote-\thespel@footnote.\spel@format}{\usebox\spel@mptbox}#1}%
206 \spel@idxwrite{footnote}{footnote-\thespel@footnote}%
207 \spel@chunkwrite{footnote-\thespel@footnote}{#1}%
208 }
209 \fi

7.8.6 Itemizations/Enumerations .

\spelitem This macro is to be used inside an enumerate, itemize, description environment
to automatically cause the generation of a speech chunk.

210 \ifspel@disabled\newcommand{\spelitem}{\item}\else
211 \newcommand{\spelitem}{%
212 \@ifnextchar[{\spelitem@opt}{\spelitem@intone}
213 }
214 \fi

28

This macro uses a number of auxiliary macros.

\spelitem@opt This is an internal macro intended to deal with the \item’s options.

215 \def\spelitem@opt[#1]{\spelitem@inttwo{#1}}

\spelitem@opt This is an internal macro intended to deal with an \spelitem without options.

216 \def\spelitem@intone#1{%
217 \stepcounter{spel@chunk}%
218 \settowidth\spel@mptboxwidth{\usebox\spel@mptbox}%
219 \spel@idxwrite{item}{\spel@@optpart\thesubparagraph-\thespel@chunk}%
220 \spel@chunkwrite{\spel@@optpart\thesubparagraph-\thespel@chunk}{#1}%
221 \item \hspace*{-\spel@mptboxwidth}\href{run:\audiodir/\spel@@optpart\thesubparagraph-

\thespel@chunk.\spel@format}{\usebox\spel@mptbox}#1}

\spelitem@inttwo This is an internal macro intended to deal with an \spelitem with options.

222 \def\spelitem@inttwo#1#2{%
223 \stepcounter{spel@chunk}%
224 \settowidth\spel@mptboxwidth{\usebox\spel@mptbox}%
225 \spel@idxwrite{item}{\spel@@optpart\thesubparagraph-\thespel@chunk}%
226 \spel@chunkwrite{\spel@@optpart\thesubparagraph-\thespel@chunk}{#1 . #2}%
227 \item[#1] \hspace*{-\spel@mptboxwidth}\href{run:\audiodir/\spel@@optpart\thesubparagraph-

\thespel@chunk.\spel@format}{\usebox\spel@mptbox}#2}

\caption This is a redefinition of the \caption macro such that it becomes alive.

228 \ifspel@disabled\else
229 \let\spel@@caption\caption
230 \renewcommand\caption[2][]{%
231 \stepcounter{spel@chunk}%
232 \spel@idxwrite{caption}{\spel@@optpart\thesubparagraph-\thespel@chunk}%
233 \spel@chunkwrite{\spel@@optpart\thesubparagraph-\thespel@chunk}{#2}%
234 \spel@@caption[#1]{\protect\href{run:\audiodir/\spel@@optpart\thesubparagraph-

\thespel@chunk.\spel@format}{#2}}
235 }
236 \fi

7.9 Generating speech chunks — explicitly .

7.9.1 Spel chunks to be parsed by spel-wizard.pl .

spelchunk (env.) The spelchunk environment is used to define explicit speech chunks.

237 \newlength\spel@mptboxwidth
238 \newsavebox\spel@mptbox
239 \savebox\spel@mptbox{\textcolor{black!25}{\qquad}}
240 \newif\ifspel@chunkarealink
241 \define@key{spelchunk}{arealink}[]{\spel@chunkarealinktrue}
242 \ifspel@disabled\def\spelchunk{}\else
243 \def\spelchunk{%

29

244 \catcode`\^^M=\active%
245 \stepcounter{spel@chunk}%
246 \spel@idxwrite{chunk}{\spel@@optpart\thesubparagraph-\thespel@chunk}%
247 \@ifnextchar[{\catcode`\^^M=5\spelchunk@opt}{\catcode`\^^M=5\spelchunk@int}}%
248 \fi
249 \ifspel@disabled\def\endspelchunk{}\else
250 \def\endspelchunk{%
251 \end{VerbatimOut}%
252 \catcode`\^^M=5\relax%
253 \ifspel@chunkarealink%
254 \href{run:\audiodir/\spel@@optpart\thesubparagraph-\thespel@chunk.\spel@format}{\input{./\chunkdir/\spel@@optpart\thesubparagraph-

\thespel@chunk}}%
255 \else%
256 \settowidth\spel@mptboxwidth{\usebox\spel@mptbox}%
257 \hspace*{-\spel@mptboxwidth}\href{run:\audiodir/\spel@@optpart\thesubparagraph-

\thespel@chunk.\spel@format}{\usebox\spel@mptbox}\input{./\chunkdir/\spel@@optpart\thesubparagraph-
\thespel@chunk}%

258 \fi%
259 \spel@chunkarealinkfalse%
260 }%
261 \fi

The environment above checks if it is called with optional arguments or not.

\spelchunk@opt This is macro that deals with the optional arguments of the spelchunk envron-
ment.

262 \def\spelchunk@opt[#1]{\setkeys{spelchunk}{#1}\spelchunk@int}

\spelchunk@int This is an internal macro to start the VerbatimOut environment embedded in the
spelchunk environment.

263 \def\spelchunk@int{%
264 \VerbatimEnvironment
265 \begin{VerbatimOut}{\chunkdir/\spel@@optpart\thesubparagraph-\thespel@chunk.tex}}

7.9.2 Explicit spelchunks .

spelchunkad (env.) The spelchunkad environment is used to override a previous speech chunk. In
this way you can provide your own text.

266 \def\spelchunkad{%
267 \catcode`\^^M=\active
268 \@ifnextchar[{\catcode`\^^M=5\spelchunk@opt}{\catcode`\^^M=5\spelchunk@int}}
269 \def\endspelchunkad{%
270 \end{VerbatimOut}
271 \catcode`\^^M=5\relax
272 }

273 \AtBeginDocument{
274 \newcommand\spel@@optpart{}
275 }

30

7.10 Helping the wizard to read our chunks .

7.10.1 Listing macros that are to be preprocessed .

Some LATEX or TEXcommands are only for layout purposes and are totally not
content related. They do not contribute to what must be read. On the contrary,
they make it hard for the spel-wizard.pl parser to convert the texts flawlessly
to what can be read by the text-to-speech engines. Examples of these layout-only
commands are \sf, \it, \tt, \bf and \displaystyle that are to be discarded,
but also macro’s like e.g. \fbox for which only the content is to be retained.

As you might also make your own macros that are pure typesetting oriented, it
makes sense to provide a macro that registers them as pure type-setting macros
and use that macro to cover the examples mentioned above.

\spelmacpp

276 \ExplSyntaxOn
277 \NewDocumentCommand{\spelmacpp}{moom}
278 {
279 \addtostream{spelidx}{macpp|#1|#2|#3|#4}
280 }
281 \ExplSyntaxOff

Now let’s register some standard macros that are to be ignored.

282 \spelmacpp{sf}{}
283 \spelmacpp{it}{}
284 \spelmacpp{tt}{}
285 \spelmacpp{bf}{}
286 \spelmacpp{HUGE}{}
287 \spelmacpp{Huge}{}
288 \spelmacpp{huge}{}
289 \spelmacpp{LARGE}{}
290 \spelmacpp{Large}{}
291 \spelmacpp{large}{}
292 \spelmacpp{normalsize}{}
293 \spelmacpp{small}{}
294 \spelmacpp{footnotesize}{}
295 \spelmacpp{scriptsize}{}
296 \spelmacpp{tiny}{}
297 \spelmacpp{minuscule}{}
298 \spelmacpp{textsf}[1]{keep}
299 \spelmacpp{textit}[1]{keep}
300 \spelmacpp{texttt}[1]{keep}
301 \spelmacpp{textbf}[1]{keep}
302 \spelmacpp{quad}{}
303 \spelmacpp{qquad}{}
304 \spelmacpp{displaystyle}{}
305 \spelmacpp{relax}{}
306 \spelmacpp{strut}{}
307 \spelmacpp{mathstrut}{}
308 \spelmacpp{label}[1]{}

31

And let’s register a macro for which only the contents is to be preserved:

309 \spelmacpp{fbox}[1]{keep}

7.10.2 Listing environments that are to be ignored .

Some LATEX or TEXenvironments are only for layout purposes and are totally not
content related. They do not contribute to what must be read. On the contrary,
they make it hard for the spel-wizard.pl parser to convert the texts flawlessly to
what can be read by the text-to-speech engines. An examples of such a layout-only
environment is the center environment.

As you might also make your own environments that are pure typesetting oriented,
it makes sense to provide a macro that registers them as pure type-setting macros
and use that macro to cover the examples mentioned above.

\spelenvpp

310 \ExplSyntaxOn
311 \NewDocumentCommand{\spelenvpp}{moom}
312 {
313 \addtostream{spelidx}{envpp|#1|#2|#3|#4}
314 }
315 \ExplSyntaxOff

Now let’s register some standard macros that are to be ignored:

316 \spelenvpp{center}{keep}

7.10.3 Audio descriptions for typesetting macros .

\spelmacad This macro allows specifying how to treat macros (with arguments) that appear
in the chunks to read out loud. The arguments are in order:

1. (mandatory) name of the macro (without leading backslash)

2. (optional) number of arguments of the macro

3. (optional) default for optional (first) argument

4. (mandatory) text to read (with macro parameters in them) You can use the
special syntax @{i18n(keyword,#1,#2)} to trigger a call to the internation-
alization (i18n) features built in the spel-wizard.pl script. This will help
to read your commands in an appropriate way. If you miss some features
in the i18n list of spel-wizard.pl, please contact the author to help you
out. If you are fluent in Perl, you might also want to change the i18n list of
spel-wizard.pl yourself. It’s not that hard.

317 \ExplSyntaxOn
318 \NewDocumentCommand{\spelmacad}{moom}
319 {

32

320 \addtostream{spelidx}{macad|#1|#2|#3|#4}
321 }
322 \ExplSyntaxOff

We immediately provide some standard constructs, which are to be ignored:

323 \spelmacad{spelatex}{spee-lay-tech}
324 \spelmacad{spelbox}{spel-box}
325 \spelmacad{spelpl}{spel wizzard dot pl}
326 \spelmacad{LaTeX}{lay-tech}
327 \spelmacad{TeX}{tech}
328 \spelmacad{textsf}[1]{#1}
329 \spelmacad{texttt}[1]{#1}
330 \spelmacad{textit}[1]{#1}
331 \spelmacad{emph}[1]{#1}
332 \spelmacad{underline}[1]{#1}
333 \spelmacad{mbox}[1]{#1}
334 \spelmacad{text}[1]{#1}
335 \spelmacad{nobreakspace}{#1}
336 \spelmacad{textasciitilde}[1]{ }
337 \spelmacad{textbackslash}{backslash}
338 \spelmacad{footnote}[1]{}
339 \spelmacad{pm}{@{i18n(plusminus)}}
340 \spelmacad{ldots}{...}

Some more that don’t seem ignorable - and they are not indeed - they are
treated differently by spel-wizard.pl. However, by registering them here, spel-
wizard.pl knows there signature:

341 \spelmacad{cite}[1]{}
342 \spelmacad{ref}[1]{}
343 \spelmacad{pageref}[1]{}

7.10.4 Audio descriptions for typesetting environments .

\spelenvad This macro allows specifying how to treat environments (with arguments) that
appear in the chunks to read out loud. The arguments are in order:

1. (mandatory) name of the macro (without leading backslash)

2. (optional) number of arguments of the macro

3. (optional) default for optional (first) argument

4. (mandatory) text to read (with macro parameters in them)

344 \ExplSyntaxOn
345 \NewDocumentCommand{\spelenvad}{moomm}
346 {
347 \addtostream{spelidx}{envad|#1|#2|#3|#4|#5}
348 }
349 \ExplSyntaxOff

33

We immediately provide some standard constructs, which are to be ignored:

350 \spelenvad{center}{}{}

7.11 Extra math commands .

The commands are only loaded if the package option extramath is provided:

351 \ifspel@extramath

\setenum This macro typesets a set defined by enumeration:

352 \DeclareRobustCommand{\setenum}[1]{\left\{#1\right\}}
353 \spelmacad{setenum}[1]{@{i18n(Setenum,#1)}}

\setdesc This macro typesets a set defined by description:

354 \DeclareRobustCommand{\setdesc}[1]{\left\{#1\right\}}
355 \spelmacad{setdesc}[1]{@{i18n(Setdesc,#1)}}

Note that these two macro’s are identical! However, the fact that they have a
different name is of great value to spel-wizard.pl.

The conditional loading ends here:

356 \fi

8 TODO .

As long as there are things on my todo list, We have a reason to live.

• provide enable/disable switch to disable certain ranges in text, e.g. the
implementation range in this document

• enable bibliography and citation stuff

References

[1] NVDA from NV Access, empowering lives through non-visual access to tech-
nology https://www.nvaccess.org online, accessed in June 2024.

[2] SprintPlus, helping people with dyslexia https://www.sprintplus.be/en
online, accessed in June 2024.

[3] Adobe Reader, a PDF reader from Adobe. https://get.adobe.com/ online,
accessed in May 2024.

34

https://www.nvaccess.org
https://www.sprintplus.be/en
https://get.adobe.com/

[4] TagPDF - Tools for experimenting with tagging using pdfLaTeX and LuaLa-
TeX. https://ctan.org/pkg/tagpdf online, accessed in June 2024.

[5] Wine - Wine Is Not an Emulator - running windows applications on POSIX-
compliant systems. https://www.winehq.org online, accessed in June 2024.

[6] Org Mode — your life in plain text. https://orgmode.org/. online, accessed
in May 2024.

[7] The Emacs An extensible, customizable, free text editor — and more. https:
//www.gnu.org/software/emacs/. online, accessed in May 2024.

[8] Org Mode SpeLaTeX Exporter — SpeLaTeX made easy. https://www.
melpa.org/#/ox-spelatex (not yet online)

[9] SpeL — Speech-enabled LATEX. https://ctan.org/pkg/spel online, ac-
cessed in June 2024.

[10] SpeL::Wizard — Incantating LATEX into natural lanuage https://metacpan.
org/pod/SpeL::Wizard online, accessed in June 2024.

[11] The Festival TTS-program. http://www.cstr.ed.ac.uk/projects/
festival. online, accessed in May 2024.

[12] The Balabolka TTS-program. http://www.cross-plus-a.com/balabolka.
htm. online, accessed in May 2024.

[13] FreeTTS — A speech synthesizer in Java. https://freetts.sourceforge.
io/docs/index.php. online, accessed in May 2024.

[14] Amazon Polly — An online text-to-speech engine. https://aws.amazon.
com/polly online, accessed in May 2024.

[15] The Comprehensive TEX Archive Network. http://www.ctan.org. online,
accessed in May 2024.

[16] The Comprehensive Perl Archive Network. http://www.cpan.org. online,
accessed in May 2024.

[17] xpdf, a simple and very fast PDF reader on GNU/Linux. http://www.
xpdfreader.com/. online, accessed in May 2024.

[18] evince, a PDF reader, part of the Gnome environment. https://help.
gnome.org/users/evince/stable/. online, accessed in May 2024.

[19] okular, a PDF reader, part of the KDE environment. https://okular.kde.
org. online, accessed in May 2024.

[20] PDF XChange Viewer, a PDF reader from Tracker Software. https://www.
pdf-xchange.com/ online, accessed in May 2024.

35

https://ctan.org/pkg/tagpdf
https://www.winehq.org
https://orgmode.org/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.melpa.org/#/ox-spelatex
https://www.melpa.org/#/ox-spelatex
https://ctan.org/pkg/spel
https://metacpan.org/pod/SpeL::Wizard
https://metacpan.org/pod/SpeL::Wizard
http://www.cstr.ed.ac.uk/projects/festival
http://www.cstr.ed.ac.uk/projects/festival
http://www.cross-plus-a.com/balabolka.htm
http://www.cross-plus-a.com/balabolka.htm
https://freetts.sourceforge.io/docs/index.php
https://freetts.sourceforge.io/docs/index.php
https://aws.amazon.com/polly
https://aws.amazon.com/polly
http://www.ctan.org
http://www.cpan.org
http://www.xpdfreader.com/
http://www.xpdfreader.com/
https://help.gnome.org/users/evince/stable/
https://help.gnome.org/users/evince/stable/
https://okular.kde.org
https://okular.kde.org
https://www.pdf-xchange.com/
https://www.pdf-xchange.com/

Change History

v0.90
General: . Birth 1

v0.91
General: . First overhaul:

- avoided big active link areas
- sketched bigger picture,
leading to the three project
phases. 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@arabic 62, 71, 79, 82, 85
\@chapter 146
\@footnotetext 199
\@ifclassloaded . . . 119
\@ifnextchar

. . . . 212, 247, 268
\@mkboth 120
\@part 126
\@restonecolfalse . 117
\@restonecoltrue . . 115
\@schapter 158
\@sect 171, 187
\@spart 135
\@ssect 188, 189
\@starttoc 122
\@undefined

64, 66, 74, 147, 159
\{ 352, 354
\} 352, 354
\^ 244, 247,

252, 267, 268, 271

A
\active 244, 267
\AddBabelHook 87
\addcontentsline . .

. 105, 106
\addtostream . . . 45,

46, 47, 51, 57,
279, 313, 320, 347

\AtBeginDocument 96, 273
\AtEndDocument 40
\audiodir

. 43, 46, 56, 94,
130, 141, 152,
165, 180, 181,

193, 205, 221,
227, 234, 254, 257

B
\begin 265

C
\c@chapter 64, 74
\c@part 66
\c@secnumdepth 175, 182
\c@spel@chunk 85
\c@spel@footnote . . . 82
\c@spel@schapter . . . 71
\c@spel@spart 62
\c@spel@ssect 79
\caption 228
\catcode . . 244, 247,

252, 267, 268, 271
\chapter 119, 147
\chunkdir

44, 47, 254, 257, 265
\closeoutputstream

. 41, 58
\contentsname . 119, 121
\csname . . 91, 92, 94, 182

D
\DeclareBoolOption

. 30, 31, 32
\DeclareRobustCommand

34, 35, 36, 352, 354
\DeclareStringOption 29
\def . . 128, 137, 149,

161, 173, 182,
189, 201, 215,
216, 222, 242,

243, 249, 250,
262, 263, 266, 269

\define@key 241

E
\else 48, 54, 65,

68, 76, 89, 104,
116, 126, 135,
146, 147, 158,
159, 171, 182,
187, 199, 210,
228, 242, 249, 255

\EnableBabelHook . . . 88
\end 251, 270
\endcsname 91, 92, 94, 182
\endspelchunk . 249, 250
\endspelchunkad . . . 269
environments:

spelchunk 237
spelchunkad 266

\expandafter 91, 92, 96
\ExplSyntaxOff

. 281, 315, 322, 349
\ExplSyntaxOn

. 276, 310, 317, 344

F
\fi 53, 60, 70,

73, 78, 100, 118,
123, 125, 134,
145, 156, 157,
169, 170, 177,
182, 186, 198,
209, 214, 236,
248, 258, 261, 356

36

G
\gdef 92

H
\hfill 180
\href 94, 107, 108, 110,

130, 141, 152,
165, 180, 181,
193, 205, 221,
227, 234, 254, 257

\hspace 205, 221, 227, 257
\hypersetup 9

I
\if@restonecol 123
\if@twocolumn 114
\ifnum 175, 182
\ifspel@chunkarealink

. 240, 253
\ifspel@disabled 48,

54, 89, 104, 126,
135, 146, 158,
171, 187, 199,
210, 228, 242, 249

\ifspel@extramath . 351
\ifx 64, 66, 74, 147, 159
\input 254, 257
\item 210, 221, 227

J
\jobname 39, 43, 44

K
\kern 34, 35

L
\languagename 87
\LaTeX 34
\left 352, 354
\let 91, 105,

107, 110, 127,
136, 148, 160,
172, 188, 200, 229

\long 201

M
\MakeUppercase 121

N
\newcounter . 61, 67,

69, 75, 77, 81, 84
\NewDocumentCommand

. 277, 311, 318, 345
\newif 240
\newlength 237

\newoutputstream 37, 38
\newsavebox 238

O
\onecolumn 115
\openoutputfile . 39, 56

P
\ProcessKeyvalOptions

. 33
\protect 234
\providecommand . . . 112

Q
\qquad 239

R
\raisebox 34, 35
\relax 252, 271
\renewcommand . . . 62,

71, 79, 82, 85,
106, 108, 113, 230

\RequirePackage . . .
. . . . 1, 2, 3, 4,
5, 6, 7, 8, 22, 23, 24

\right 352, 354
\rotatebox 34, 35

S
\savebox 239
\schapter 159
\section 119
\setcounter 63, 72, 80,

83, 86, 129, 139,
150, 163, 178, 191

\setdesc 354
\setenum 352
\setkeys 262
\settowidth

. 203, 218, 224, 256
\SetupKeyvalOptions 25
\spel@@addcontentsline

. 105, 109
\spel@@caption 229, 234
\spel@@chapter 148, 151
\spel@@fntext . 200, 204
\spel@@href . . 107, 110
\spel@@label . 182, 183
\spel@@optpart

. 130, 131,
132, 141, 142,
143, 152, 153,
154, 165, 166,
167, 180, 181,
183, 184, 193,

195, 196, 219,
220, 221, 225,
226, 227, 232,
233, 234, 246,
254, 257, 265, 274

\spel@@part . . 127, 130
\spel@@schapter 160, 164
\spel@@sect . . 172, 179
\spel@@spart . 136, 140
\spel@@ssect . 188, 192
\spel@chunk 84
\spel@chunkarealinkfalse

. 259
\spel@chunkarealinktrue

. 241
\spel@chunkwrite . .

. 54, 93,
132, 143, 154,
167, 184, 196,
207, 220, 226, 233

\spel@footnote 81
\spel@format

45, 94, 130, 141,
152, 165, 180,
193, 205, 221,
227, 234, 254, 257

\spel@idxwrite
48, 87, 97, 131,

142, 153, 166,
183, 195, 206,
219, 225, 232, 246

\spel@mptbox
. 203, 205, 218,
221, 224, 227,
238, 239, 256, 257

\spel@mptboxwidth .
. 203, 205,
218, 221, 224,
227, 237, 256, 257

\spel@registerelement
. 89, 101, 102, 103

\spel@schapter 64
\spel@spart 61
\spel@ssect 74
\spelatex 34
\spelbox 35
\spelchunk . . . 242, 243
spelchunk (env.) . . . 237
\spelchunk@int

. 247, 262, 263, 268
\spelchunk@opt

. . . . 247, 262, 268
\spelchunkad 266
spelchunkad (env.) . 266

37

\spelenvad . . . 344, 350
\spelenvpp . . . 310, 316
\spelitem 210
\spelitem@intone . .

. 212, 216
\spelitem@inttwo . .

. 215, 222
\spelitem@opt

. . . . 212, 215, 216
\spelmacad 317, 323,

324, 325, 326,
327, 328, 329,
330, 331, 332,
333, 334, 335,
336, 337, 338,
339, 340, 341,
342, 343, 353, 355

\spelmacpp 276,
282, 283, 284,
285, 286, 287,
288, 289, 290,
291, 292, 293,
294, 295, 296,
297, 298, 299,

300, 301, 302,
303, 304, 305,
306, 307, 308, 309

\spelpl 36
\stepcounter 138, 162,

176, 190, 202,
217, 223, 231, 245

T
\tableofcontents . .

. 112, 113
\textcolor . . . 181, 239
\texttt 36
\thechapter 152, 153, 154
\thepart 131
\thespel@chunk . . 85,

219, 220, 221,
225, 226, 227,
232, 233, 234,
246, 254, 257, 265

\thespel@footnote .
. 82, 205, 206, 207

\thespel@schapter .
. 71, 165, 166, 167

\thespel@spart
. 62, 141, 142, 143

\thespel@ssect
. 79, 193, 195, 196

\thesubparagraph 180,
181, 183, 184,
193, 195, 196,
219, 220, 221,
225, 226, 227,
232, 233, 234,
246, 254, 257, 265

\triangleright 181
\twocolumn 123
\typeout 50

U
\usebox 203,

205, 218, 221,
224, 227, 256, 257

V
\VerbatimEnvironment

. 264

38

	1 Preface
	1.1 Background
	1.2 State of the art
	1.2.1 In general
	1.2.2 For LaTeX

	1.3 This package

	2 Introduction
	2.1 Target audience
	2.2 The magic under the hood
	2.2.1 The S-15p10eLbox-ecosystem
	2.2.2 The overall picture
	2.2.3 Implicit spelchunks
	2.2.4 Explicit spelchunks
	2.2.5 Paragraphs
	2.2.6 Emacs Orgmode to the rescue!

	2.3 Extra math commands
	2.4 Added value

	3 Installation
	3.1 The S-15p10eLaTeX package
	3.2 The spel-wizard.pl speech generator
	3.2.1 The script
	3.2.2 The configuration file

	3.3 The PDF viewer
	3.4 The media player

	4 Usage
	4.1 Preparing your document source
	4.1.1 Treat the implicit spelchunks
	4.1.2 Treat the explicit spelchunks
	4.1.3 Manually provide text to read when needed
	4.1.4 Provide descriptions for typesetting macros
	4.1.5 Descriptions for typesetting environments
	4.1.6 Using the i18n features of spel-wizard.plwhen describing your macros and environments
	4.1.7 The extra math commands

	4.2 Going through the flow

	5 Example
	6 Demo
	6.1 Numbers
	6.2 Fractions
	6.2.1 A fraction only containg numbers
	6.2.2 A fraction with a little more under the hood

	6.3 Simple expressions
	6.3.1 A polynomial function
	6.3.2 Some more complex equations
	6.3.3 A rather well-known definite integral

	6.4 Sets
	6.5 Matrices
	6.6 Figures and Tables
	6.6.1 Figures
	6.6.2 Tables

	6.7 A parabola tale

	7 Implementation
	7.1 Design principles
	7.2 Auxiliary Packages
	7.3 Options
	7.4 Logos
	7.5 The speech stream
	7.6 Create missing counters
	7.7 Setting up the language
	7.8 Generating speech chunks — implicitly
	7.8.1 Auxiliary macros
	7.8.2 Title elements
	7.8.3 Table of contents
	7.8.4 Sectioning commands
	7.8.5 Notes
	7.8.6 Itemizations/Enumerations

	7.9 Generating speech chunks — explicitly
	7.9.1 Spel chunks to be parsed by spel-wizard.pl
	7.9.2 Explicit spelchunks

	7.10 Helping the wizard to read our chunks
	7.10.1 Listing macros that are to be preprocessed
	7.10.2 Listing environments that are to be ignored
	7.10.3 Audio descriptions for typesetting macros
	7.10.4 Audio descriptions for typesetting environments

	7.11 Extra math commands

	8 TODO
	References
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

